
4 Identical Particles

In this chapter we consider the consequences resulting from the fact that identical par-
ticles are indistinguishable in quantum mechanics (as compared to classical mechanics),
and the formalism needed to deal with such situations.
Some of the material presented in this chapter is taken from Auletta, Fortunato and

Parisi, Chap. 7 and Cohen-Tannoudji, Diu and Laloë, Vol. II, Chaps. XIV.

4.1 Exchange Degeneracy

In classical mechanics even if two particles forming a system are identical (i.e., they share
the same physical properties, such as mass, charge, etc.), there is nothing unusual to the
manner with which one would go about analyzing the system’s evolution. That is, the
case of two identical particles is simply a special case of the more general situation when
the particles are different. In other words, the fact that the particles are identical does
not preclude us from following their respective evolutions separately. It is still possible
to label the particles (say, particle 1 and particle 2) without any danger of confusion.
Things are very different in quantum mechanics since particles do not have definite

trajectories, but rather they are described using wave functions. If two identical particles
are separated by a distance that is much larger than the extent of their wave functions,
such that they do not overlap, then it is presumably easy to label them and keep track
of their evolution. But it is possible that their evolution would bring a spatial overlap of
their wave functions (e.g., they could be in the process of colliding), and it then becomes
impossible to tell them apart. More precisely, if we detect the presence of a particle in a
region where both have a sizeable probability of being present (i.e., their wave functions
are non-zero overlapping), it then becomes impossible to say which particle was detected.
This situation is an example what is referred to exchange degeneracy .

Exercise 4.1. Let us consider the case of two spin one-half particles. We assume that
one particle is in the spin-up state |+〉, where its spin component along the z-axis has
the ~/2 eigenvalue, while the other is in the spin-down state |−〉. Find the most general
ket for this system and determine the probability of finding both particles having their
spin component along the x-axis Ŝx with the ~/2 eigenvalue.

Solution.
The kets |+,−〉 and |−,+〉 both corresponds to a spin-up/spin-down state. The most

general form of such state therefore consists of a linear combination of these kets of the
form

|ψ〉 = α |+,−〉+ β |−,+〉 , (4.1)
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4 Identical Particles

with |α|2 + |β|2 = 1 to ensure normalization. We therefore find that there exists an
infinite number of kets with the same physical state where one spin is up and the other
down. This is clearly a case of exchange degeneracy.
We know from equations (3.127) and (3.129) of Chapter 3 that the matrix associated

to the operator Ŝx is given by

Ŝx =
~
2

(
0 1
1 0

)
, (4.2)

when using the basis

|+〉 =
(

1
0

)
, |−〉 =

(
0
1

)
. (4.3)

We could formally diagonalize equation (4.2) and determine its eigenvectors using the
material covered in Exercise 1.5 of Chapter 1, but it is straightforward to achieve this by
inspection. It will be readily verified that the eigenvectors of Ŝx are given by

|±〉x =
1√
2
(|+〉 ± |−〉) , (4.4)

i.e., Ŝx |±〉x = ±~/2 |±〉x. The compound state where both particles are in the |+〉x state
is thus expressed by the following direct product

|χ〉 = |+〉x ⊗ |+〉x
=

1

2
(|+,+〉+ |+,−〉+ |−,+〉+ |−,−〉) . (4.5)

The probability of finding the system in that state is

P (+,+x) = |〈χ |ψ〉|2

=

∣∣∣∣12 (α+ β)

∣∣∣∣2 . (4.6)

This result is problematic because it implies that it is not possible to uniquely describe
the state of the system. In other words, it implies that physicists performing independent
experiments on similar systems would obtain results that are not consistent with each
other. This is entirely non-sensical from a physics standpoint. This state of affair is
entirely traceable to the exchange degeneracy, which must therefore be lifted in order for
such a system to be describable in a way that is to be expected from a physical system.
Evidently, the exchange degeneracy is not limited to systems composed of two identical
particles, and can be generalized to any arbitrary number N of them.
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4 Identical Particles

4.2 Hamiltonian Invariance (or Symmetry)

If two identical particles are part of a system, then the corresponding Hamiltonian must
be invariant (or symmetric) under the permutation of these particles. This could actually
be used as a definition for identical particles. We label these two particles as 1 and 2
and define the permutation operator P̂21 = P̂12 such that given a compound state
|ϕ (1)χ (2)〉 for the two particles we have

P̂21 |ϕ (1)χ (2)〉 = |ϕ (2)χ (1)〉
= |χ (1)ϕ (2)〉 . (4.7)

The fact that the permutation of two identical particles leaves the Hamiltonian (i.e.,
the energy) of a system unchanged implies that corresponding operators commute with
each other [

P̂21, Ĥ
]
= 0. (4.8)

From this we conclude that P̂21 (or any permutation operator, for that matter) and Ĥ
share the same set of eigenvectors (see Section 3.2 of Chapter 3). If we denote that basis
as {|uj (1)uk (2)〉}, we can evaluate the matrix elements of P̂21 with

〈
uj (1)uk (2)

∣∣∣ P̂21

∣∣∣um (1)un (2)
〉

= 〈uj (1)uk (2) |un (1)um (2)〉

= δjnδkm. (4.9)

Likewise, the matrix elements of P̂ †21 are calculated to be

〈
uj (1)uk (2)

∣∣∣ P̂ †21 ∣∣∣um (1)un (2)
〉

= 〈uk (1)uj (2) |um (1)un (2)〉

= δkmδjn (4.10)

since
(
P̂21 |uj (1)uk (2)〉

)†
= 〈uj (1)uk (2)| P̂ †21. A comparison of equations (4.9) and

(4.10) reveals that this permutation operator is Hermitian, i.e., P̂ †21 = P̂21. Also, since it
is clear that (

P̂21

)2
= 1̂, (4.11)

we find that P̂ †21P̂21 = 1̂. The permutation operator is therefore unitary.

Exercise 4.2. Use the basis of eigenvectors {|uj (1)uk (2)〉} common to Ĥ and P̂21 to
find an expression for the latter.

Solution.
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4 Identical Particles

Let us use the closure relation
∑

j,k |uj (1)uk (2)〉〈uj (1)uk (2)| = 1̂ to expand the
following (|ψ〉 is an arbitrary state vector)

P̂21 |ψ〉 = P̂21

∑
j,k

|uj (1)uk (2)〉 〈uj (1)uk (2) |ψ〉

=
∑
j,k

P̂21 |uj (1)uk (2)〉 〈uj (1)uk (2) |ψ〉

=
∑
j,k

|uk (1)uj (2)〉 〈uj (1)uk (2) |ψ〉 , (4.12)

which implies that

P̂21 =
∑
j,k

|uk (1) , uj (2)〉〈uj (1) , uk (2)|

=
∑
j,k

|uj (1) , uk (2)〉〈uk (1) , uj (2)| . (4.13)

Although we have so far limited our discussion to a finite basis, the same reasoning
applies to infinite, continuous bases or a combination of both. For example, using the
compound basis {|r1, ε1; r2, ε2〉} for the positions r̂j and spin components Ŝjz of two
identical particles (j = 1, 2), it is also possible to determine the effect of P̂21 on their
wave function ψ (r1, ε1; r2, ε2). That is, if we define

|ϕ〉 = P̂21 |ψ〉 (4.14)

we can calculate (since P̂21 = P̂ †21)

ϕ (r1, ε1; r2, ε2) =
〈
r1, ε1; r2, ε2

∣∣∣ P̂21

∣∣∣ψ〉
= 〈r2, ε2; r1, ε1 |ψ〉
= ψ (r2, ε2; r1, ε1) (4.15)

And in a similar manner as with a finite basis only, we find that

P̂21 =
∑
ε1,ε2

∫ ∞
−∞

d3xd3x′ |r1, ε1; r2, ε2〉〈r2, ε2; r1, ε1| . (4.16)

4.2.1 Symmetric and Antisymmetric States

We already know from equation (4.11) that, for |ψ〉 one of its eigenvector,(
P̂21

)2
|ψ〉 = |ψ〉 , (4.17)
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4 Identical Particles

and since P̂21 is Hermitian and must therefore have real eigenvalues, it follows that

P̂21 |ψ〉 = ± |ψ〉 . (4.18)

That is, ±1 are the only possible eigenvalues for P̂21. The eigenvectors {|ψS〉 , |ψA〉} such
that

P̂21 |ψS〉 = + |ψS〉 (4.19)
P̂21 |ψA〉 = − |ψA〉 (4.20)

are respectively called symmetric and antisymmetric states since they are symmetric
and antisymmetric to the permutation of two identical particles (i.e., the kets change sign
or not after the permutation).
We can define the projectors on the spaces to which the symmetric and antisymmetric

states belong with

Ŝ =
1

2

(
1̂ + P̂21

)
(4.21)

Â =
1

2

(
1̂− P̂21

)
, (4.22)

since for an arbitrary ket (as always |α|2 + |β|2 = 1)

|ψ〉 = α |ψS〉+ β |ψA〉 (4.23)

we have

Ŝ |ψ〉 =
1

2

(
1̂ + P̂21

)
(α |ψS〉+ β |ψA〉)

= α |ψS〉 (4.24)

Â |ψ〉 =
1

2

(
1̂− P̂21

)
(α |ψS〉+ β |ψA〉)

= β |ψA〉 . (4.25)

It is also straightforward to verify that

Ŝ† = Ŝ (4.26)
Â† = Â (4.27)
Ŝ2 = Ŝ (4.28)
Â2 = Â, (4.29)

and
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4 Identical Particles

[
Ŝ, Â

]
= 0̂ (4.30)[

Ŝ, P̂21

]
= 0̂ (4.31)[

Â, P̂21

]
= 0̂ (4.32)

Ŝ + Â = 1̂. (4.33)

The combinations of equations (4.24) with (4.31) and (4.25) with (4.32), respectively,
yield

P̂21Ŝ |ψ〉 = ŜP̂21 |ψ〉
= Ŝ |ψ〉 (4.34)

P̂21Â |ψ〉 = ÂP̂21 |ψ〉
= −Â |ψ〉 (4.35)

We thus find that Ŝ and Â are symmetrizer and antisymmetrizer operators, re-
spectively.

Exercise 4.3. We consider a system containing two identical particles 1 and 2. Show
that for the extended observables B̂ (j) and Ĉ (j), with j = 1, 2, we have

P̂21B̂ (1) P̂ †21 = B̂ (2) (4.36)

P̂21

[
B̂ (1) + Ĉ (2)

]
P̂ †21 = B̂ (2) + Ĉ (1) (4.37)

P̂21B̂ (1) Ĉ (2) P̂ †21 = B̂ (2) Ĉ (1) . (4.38)

Solution.
To simplify the calculations we will use a basis {|uj (1)uk (2)〉} containing the eigen-

vectors of the extended observables B̂ (1) and B̂ (2) (the corresponding eigenvalues are bj
and bk, respectively). We then have

P̂21B̂ (1) P̂ †21 |uj (1)uk (2)〉 = P̂21B̂ (1) |uk (1)uj (2)〉
= bkP̂21 |uk (1)uj (2)〉
= bk |uj (1)uk (2)〉
= B̂ (2) |uj (1)uk (2)〉 , (4.39)

and P̂21B̂ (1) P̂ †21 = B̂ (2). Since the same technique can be applied to the observables
Ĉ (1) and Ĉ (2), it follows that P̂21

[
B̂ (1) + Ĉ (2)

]
P̂ †21 = B̂ (2) + Ĉ (1). For equation

(4.38) we can write

91



4 Identical Particles

P̂21B̂ (1) Ĉ (2) P̂ †21 = P̂21B̂ (1) P̂ †21P̂21Ĉ (2) P̂ †21
= B̂ (2) Ĉ (1) . (4.40)

Finally, we note that the last two relations can be generalized to any operator Ô (1, 2)
such that

P̂21Ô (1, 2) P̂ †21 = Ô (2, 1) . (4.41)

An observable is said to be symmetric when ÔS (1, 2) = ÔS (2, 1), and from equation
(4.41) we find that [

ÔS (1, 2) , P̂21

]
= 0. (4.42)

4.2.2 Generalization to an Arbitrary Number of Particles

We have so far limited ourselves to the special case of two identical particles. The process
can be extended to permutations between an arbitrary number of N particles but, as we
will see, we should be careful that not all of the properties obtained for the case of two
identical particles apply in general. It will be easier if we first look at the N = 3 case
before generalizing our results.
For a system composed of three identical particles (e.g., three electrons or the H+

3

molecule) a state for the system can be written as

|ψ〉 = |ui (1)uj (2)uk (3)〉 , (4.43)

where {ui} is some basis valid for all particles (since they are identical). The permutation
operator P̂mnp is such that it transforms the state vector by replacing the particle with
label m with label n, the one with label n is replaced by label p and the one with label
p by label m.1 For example, we have

P̂132 |ui (1)uj (2)uk (3)〉 = |ui (3)uj (1)uk (2)〉
= |uj (1)uk (2)ui (3)〉 . (4.44)

There exists N ! permutations, i.e., six for N = 3, P̂123, P̂132, P̂12, P̂23, P̂31 and the
identity 1̂. We should note that performing a cyclic permutation on a given operator
leaves it unchanged, i.e., P̂123 = P̂231 = P̂312, etc. Also, every permutation admits an
inverse operation and the product of two permutations yields another permutation, e.g.,

1There are different ways of defining the permutation operator when N > 2. I follow here the one used
by, e.g., Auletta, Fortunato and Parisi.

92
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P̂213P̂123 |ui (1)uj (2)uk (3)〉 = P̂213 |ui (2)uj (3)uk (1)〉
= |ui (1)uj (2)uk (3)〉 (4.45)

such that P̂213 = P̂−1123, and

P̂12P̂123 |ui (1)uj (2)uk (3)〉 = P̂12 |ui (2)uj (3)uk (1)〉
= |ui (1)uj (3)uk (2)〉 (4.46)

or P̂12P̂123 = P̂23. Evidently, a permutation of two particles only, which is called a
transposition operator , is its own inverse (i.e., P̂12 = P̂−112 ). Generally, for an arbitrary
number of particles N the inverse of a permutation operator is given by

P̂−1abc···yz = P̂azy···cb. (4.47)

Moreover, a permutation can always be broken down into a product of transpositions in
the following manner

P̂abcde = P̂abP̂bcP̂cdP̂de. (4.48)

A given permutation is called even or odd depending on whether it has an even or
odd number of transpositions in its transposition product (the permutation of equation
(4.48) is even); this defines the parity of the permutation. It follows that permutation
operators are unitary , since they are the product of transposition operators (which
are unitary).
In general the product of two permutations does not depend on what vector it is applied

to, and it is possible to evaluate it without having recourse to an ket. For example, it
can be said that on the left hand side of equation (4.46): 1 is first replaced by 2 (the
P̂123 permutation) and then by 1 (the P̂12 permutation); 2 is first replaced by 3 (the
P̂123 permutation) and then by 3 (the P̂12 permutation); 3 is first replaced by 1 (the P̂123

permutation) and then by 2 (the P̂12 permutation). Summarizing all this we have

1← 2← 1 = 1← 1, 2← 3← 3 = 2← 3, 3← 1← 2 = 3← 2, (4.49)

or P̂12P̂123 = P̂23, as expected. Using the same procedure we find that P̂123P̂12 = P̂13 and,
therefore, P̂12P̂123 6= P̂123P̂12. This result is true in general, i.e., permutation operators
do not commute (i.e., when N > 2). In particular, we note that P̂12P̂23 6= P̂23P̂12,
which should be apparent from P̂12P̂23 = P̂123 and P̂23P̂12 = P̂32P̂21 = P̂321 and therefore

P̂ †123 =
(
P̂12P̂23

)†
= P̂ †23P̂

†
12

= P̂23P̂12

= P̂321. (4.50)
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We thus conclude that permutation operator are not Hermitian in general (i.e.,
when N > 2).
To determine the effect of a permutation operator on a wave function, it is advanta-

geous to generalize the notation used so far. We start by writing |r1, ε1; r2, ε2; r3, ε3〉 =
|r1, ε1 (1) r2, ε2 (2) r3, ε3 (3)〉 (we choose N = 3, for simplicity) and with, say, |ϕ〉 =
P̂123 |ψ〉,

ϕ (r1, ε1; r2, ε2; r3, ε3) =
〈
r1, ε1 (1) r2, ε2 (2) r3, ε3 (3)

∣∣∣ P̂123

∣∣∣ψ〉
=

[
P̂ †123 |r1, ε1 (1) r2, ε2 (2) r3, ε3 (3)〉

]†
|ψ〉

=
[
P̂132 |r1, ε1 (1) r2, ε2 (2) r3, ε3 (3)〉

]†
|ψ〉

= [|r1, ε1 (3) r2, ε2 (1) r3, ε3 (2)〉]† |ψ〉
= 〈r2, ε2 (1) r3, ε3 (2) r1, ε1 (3) |ψ〉
= ψ (r2, ε2; r3, ε3; r1, ε1) (4.51)

For example, if we set

ψ (r1, ε1; r2, ε2; r3, ε3) = r1 + 2r2 + 3r3 (4.52)

then

ϕ (r1, ε1; r2, ε2; r3, ε3) = ψ (r2, ε2; r3, ε3; r1, ε1)

= r2 + 2r3 + 3r1. (4.53)

We should be careful to note that in this case we applied the permutation operator P̂123 to
the ket |ψ〉, not the eigenvector |r1, ε1 (1) r2, ε2 (2) r3, ε3 (3)〉. The two situations are not
equivalent. More precisely, if we apply the permutation operator P̂123 to the eigenvector
|r1, ε1 (1) r2, ε2 (2) r3, ε3 (3)〉 we instead have

ϕ′ (r1, ε1; r2, ε2; r3, ε3) =
[
P̂123 |r1, ε1 (1) r2, ε2 (2) r3, ε3 (3)〉

]†
|ψ〉

=
〈
r1, ε1 (1) r2, ε2 (2) r3, ε3 (3)

∣∣∣ P̂ †123 ∣∣∣ψ〉
=

〈
r1, ε1 (1) r2, ε2 (2) r3, ε3 (3)

∣∣∣ P̂132

∣∣∣ψ〉
= 〈r3, ε3 (1) r1, ε1 (2) r2, ε2 (3) |ψ〉
= ψ (r3, ε3; r1, ε1; r2, ε2) , (4.54)

and with the previous example

ϕ (r1, ε1; r2, ε2; r3, ε3) = ψ (r3, ε3; r1, ε1; r2, ε2)

= r3 + 2r1 + 3r2. (4.55)
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Evidently, we have ϕ′ (r1, ε1; r2, ε2; r3, ε3) 6= ϕ (r1, ε1; r2, ε2; r3, ε3). In fact, as is apparent
from our calculations, these two wave functions can be seen to result from the action on
the ket |ψ〉 of permutation operators that are inverse from one another (i.e., P̂132 and
P̂123). This is akin to either effecting a rotation on a system of coordinate axes or on an
object (e.g., a vector) positioned in relation to these axes.
For N arbitrary, we define a totally symmetric ket as one for that is left unchanged

by all permutation operator, i.e.,

P̂α |ψS〉 = |ψS〉 , (4.56)

where α represents some permutation. Conversely, a totally antisymmetric ket is
defined by

P̂α |ψA〉 = εα |ψA〉 , (4.57)

where

εα =

{
+1,

−1,
if P̂α is of even parity
if P̂α is of odd parity.

(4.58)

For N identical particles, N/2 have εα = ±1.
We can now generalize the symmetrizer and antisymmetrizer operators previously

introduced for N = 2 with

Ŝ =
1

N !

∑
α

P̂α (4.59)

Â =
1

N !

∑
α

εαP̂α. (4.60)

Because permutation operators can be decomposed into a product of transpositions, P̂ †α
has the same number of transpositions as P̂α (and therefore the same parity), and that
the summations in equations (4.59) and (4.60) are on all permutation operators, we find
that Ŝ† = Ŝ and Â† = Â. Moreover, since for any two permutations operators P̂α and
P̂β we have

P̂βP̂α = P̂γ (4.61)
εβεα = εγ , (4.62)

it follows that

P̂βŜ = ŜP̂β

= Ŝ (4.63)
P̂βÂ = ÂP̂β

= εβÂ, (4.64)
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and

Ŝ2 =
1

N !

∑
α

P̂αŜ

=
1

N !

∑
α

Ŝ

= Ŝ (4.65)

Â2 =
1

N !

∑
α

εαP̂αÂ

=
1

N !

∑
α

ε2αÂ

= Â (4.66)

ÂŜ =
1

N !

∑
α

εαP̂αŜ

= Ŝ

(
1

N !

∑
α

εα

)
= 0, (4.67)

since one half of the permutation operators have εα = 1 and the other half εα = −1.
These last three relations imply that Ŝ and Â are projectors. That is, from equations
(4.63) and (4.64)

P̂βŜ |ψ〉 = Ŝ |ψ〉 (4.68)

P̂βÂ |ψ〉 = εβÂ |ψ〉 , (4.69)

and from equations (4.56) and (4.57)

Ŝ |ψ〉 = |ψS〉 (4.70)
Â |ψ〉 = |ψA〉 . (4.71)

Exercise 4.4. Consider the case where N = 3, and calculate Ŝ, Â and Ŝ + Â.

Solution.
Since 1̂, P̂123 and P̂132 have ε = 1 (0, 2 and 2 transpositions), while P̂12, P̂23 and P̂13

have ε = −1 (1 transposition), we have
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Ŝ =
1

6

(
1̂ + P̂123 + P̂132 + P̂12 + P̂23 + P̂13

)
(4.72)

Â =
1

6

(
1̂ + P̂123 + P̂132 − P̂12 − P̂23 − P̂13

)
(4.73)

Ŝ + Â =
1

3

(
1̂ + P̂123 + P̂132

)
6= 1̂. (4.74)

The result obtained in equation (4.74) forN = 3 is different than what we got whenN = 2
(see equation (4.33)), and it implies that not all kets of the basis {|ui (1)uj (2)uk (3)〉}
are covered by the Ŝ and Â projectors.

4.3 Eight Postulate

It is found through experiments that when a system is composed of several identical
particles not all state vectors contained in the basis resulting from the direct products
of the individual particles’ bases are realized physically (i.e., {|ui (1)uj (2)uk (3)〉} for
N = 3), but only vectors that are either totally symmetric or antisymmetric. This fact
leads to the Postulate of Symmetrization

The state of a quantum mechanical system composed of N identical particles are ei-
ther completely symmetric or completely antisymmetric with respect to the permutations
of these particles. Bosons are the particles for which the states are symmetric, while
fermions are those for which the states are antisymmetric.

It is further observed that boson have integer spin and fermion have half-integer
spin .
It is important to realize that restricting the states of a system to those of the symmetric

and antisymmetric spaces associated to Ŝ and Â, respectively, lift the exchange degen-
eracy. This is because the degeneracy arises from the fact that all vectors link through
permutations (e.g., |ui (1)uj (2)uk (3)〉, P̂123 |ui (1)uj (2)uk (3)〉, etc.), which lead to the
same physical state, will all be contained in a well defined way in these spaces. For
example, we know from equations (4.68) and (4.69) that two kets |ψ〉 and P̂β |ψ〉 yield
collinear states when acted upon by Ŝ or Â.

Exercise 4.5. Let us return to the case of two spin-1/2 particles, one particle in the
spin-up state |+〉 and the other in the spin-down state |−〉. Determine the proper state
for this system and calculate the probability of finding both particles having their spin
component along the x-axis Ŝx with the ~/2 eigenvalue.

Solution.
Since we are dealing with fermions, we must build an antisymmetric state for this

system. For this we use
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Â =
1

2

(
1̂− P̂21

)
, (4.75)

and we can calculate an antisymmetric vector with

∣∣ψ′A〉 = Â |+,−〉

=
1

2

(
1̂− P̂21

)
|+,−〉

=
1

2
(|+,−〉 − |−,+〉) . (4.76)

It is clear that this ket is antisymmetric in the exchange of the two particles. We should
normalize that ket to obtain

|ψA〉 =
1√
2
(|+,−〉 − |−,+〉) . (4.77)

Projecting this ket on that from equation (4.5), which we write down for convenience
here

|χ〉 = 1

2
(|+,+〉+ |+,−〉+ |−,+〉+ |−,−〉) , (4.78)

we get

P (+,+x) = |〈χ |ψA〉|2

= 0. (4.79)

This result is now a clear prediction that does not exhibit any of the problems we origi-
nally saw in Exercise 4.1. The exchange degeneracy is lifted.

Incidentally, the result obtained in Exercise 4.5 showing a zero probability of finding
the two fermions with the same spin component along the x-axis Ŝx is a manifestation
of the Pauli Exclusion Principle

Two identical fermions cannot occupy in the same individual state.

We can further test this principle on the |+,+〉 symmetric state. That is, we can verify
that

Â |+,+〉 =
1

2

(
1̂− P̂21

)
|+,+〉

=
1

2
(|+,+〉 − |+,+〉)

= 0, (4.80)

and, again, two identical fermions cannot both be in the |+〉 state.
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4 Identical Particles

We now consider three identical fermions (N = 3), which could potentially occupy
three different states |u1〉, |u2〉 and |u3〉. An appropriate antisymmetric state can be
obtained with

Â |u1 (1)u2 (2)u3 (3)〉 =
1

3!

∑
α

εαP̂α |u1 (1)u2 (2)u3 (3)〉 . (4.81)

It turns out that the alternations in the sign εα of the different terms are determined
in the same manner as those for the determinant of a 3 × 3 matrix. It is therefore
advantageous to write the antisymmetric ket in the form

Â |u1 (1)u2 (2)u3 (3)〉 =
1

3!

∣∣∣∣∣∣
|u1 (1)〉 |u2 (1)〉 |u3 (1)〉
|u1 (2)〉 |u2 (2)〉 |u3 (2)〉
|u1 (3)〉 |u2 (3)〉 |u3 (3)〉

∣∣∣∣∣∣ . (4.82)

For an arbitrary number of identical particles, while applying adequate normalization,
we can generalize the so-called Slater determinant to

|ψA〉 =
1√
N !

∣∣∣∣∣∣∣∣∣
|u1 (1)〉 |u2 (1)〉 · · · |uN (1)〉
|u1 (2)〉 |u2 (2)〉 · · · |uN (2)〉

...
...

...
...

|u1 (N)〉 |u2 (N)〉 · · · |uN (N)〉

∣∣∣∣∣∣∣∣∣ . (4.83)

This determinant will be found to vanish whenever |uj〉 = |uk〉 for any j 6= k.

4.3.1 Interactions Between Direct and Exchange Processes

The symmetrization process in the analysis of identical particles can also bring coherence
effects (or interferences), which are not present when the particles are different (or, at
the least, are distinguishable). Let us consider the case of two identical particles (either
bosons or fermions) with initial states |ϕ〉 and |χ〉 (of course, we do not know which
particle is in what state). The initial state of the overall system is then given by

|ψi〉 =
1√
2

(
1̂ + εP̂21

)
|ϕ (1)χ (2)〉 , (4.84)

where ε = ±1 depending on the type of particles we are dealing with. The two particles,
being identical, share the same basis {|uk (j)〉}, which are eigenvectors for the extended
observables B̂ (j) (j = 1, 2). We now inquire about the probability of simultaneously
measuring the eigenvalues bm and bn on the system (i.e, any one of the particle in the state
|um〉 and the other in the state |un〉). The eigenvector associated with these eigenvalues
must also be symmetrize, since the particles are indistinguishable, and

|ψf〉 =
1√
2

(
1̂ + εP̂21

)
|um (1)un (2)〉 . (4.85)

We then calculate
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〈ψf |ψi〉 =
1

2

〈
um (1)un (2)

∣∣∣ (1̂ + εP̂ †21

)(
1̂ + εP̂21

) ∣∣∣ϕ (1)χ (2)
〉

=
〈
um (1)un (2)

∣∣∣ (1̂ + εP̂21

) ∣∣∣ϕ (1)χ (2)
〉

= 〈um (1)un (2) |ϕ (1)χ (2)〉+ ε 〈um (1)un (2) |χ (1)ϕ (2)〉
= 〈um |ϕ〉 〈un |χ〉+ ε 〈um |χ〉 〈un |ϕ〉 . (4.86)

We thus find that the projection of the two states on one another yields two terms
commonly called direct process and exchange process term, as the initial states of
the particles |ϕ〉 and |χ〉 are swapped in their projections on the eigenvectors |um〉 and
|un〉 between the two terms. The probability of finding the eigenvalues bm and bn is
therefore

P (bm, bn) = |〈um |ϕ〉 〈un |χ〉+ ε 〈um |χ〉 〈un |ϕ〉|2

= |〈um |ϕ〉|2 |〈un |χ〉|2 + |〈um |χ〉|2 |〈un |ϕ〉|2

+2εRe {〈um |ϕ〉 〈un |χ〉 〈um |χ〉∗ 〈un |ϕ〉∗} . (4.87)

The last term in equation (4.87) is clearly an interference term.
We can contrast this result with the case when the two particles are not identical

(or can be distinguished), for which case we simply set ε = 0 equation (4.87). The
interference term then disappears.
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